Enumerating (2+2)-free posets by the number of minimal elements and other statistics

نویسندگان

  • Sergey Kitaev
  • Jeffrey B. Remmel
چکیده

A poset is said to be (2+ 2)-free if it does not contain an induced subposet that is isomorphic to 2+ 2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+ 2)-free posets: P (t) = ∑ n≥0 ∏n i=1 ( 1− (1− t) ) . We extend this result by finding the generating function for (2+ 2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form P (t, z) = ∑ n,k≥0 pn,kt z = 1+ ∑ n≥0 zt (1−zt)n+1 ∏n i=1(1− (1− t) ) where pn,k equals the number of (2+ 2)-free posets of size n with k minimal elements. Résumé. Un poset sera dit (2+ 2)-libre s’il ne contient aucun sous-poset isomorphe à 2+ 2, l’union disjointe de deux chaı̂nes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l’aide de “suites de montées”, la fonction génératrice des nombres de posets (2+ 2)-libres: c’est P (t) = ∑ n≥0 ∏n i=1 ( 1− (1− t) ) . Nous étendons ce résultat en trouvant la fonction génératrice des posets (2+ 2)-libres rendant compte de quatre statistiques, dont le nombre d’éléments minimaux du poset. Nous montrons aussi que lorsqu’on ne s’intéresse qu’au nombre d’éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en P (t, z) = ∑ n,k≥0 pn,kt z = 1 + ∑ n≥0 zt (1−zt)n+1 ∏n i=1(1 − (1 − t) ), où pn,k est le nombre de posets (2+ 2)-libres de taille n avec k éléments minimaux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of Subclasses of (2+2)-free Partially Ordered Sets

We investigate avoidance in (2+2)-free partially ordered sets, posets that do not contain any induced subposet isomorphic to the union of two disjoint chains of length two. In particular, we are interested in enumerating the number of partially ordered sets of size n avoiding both 2+2 and some other poset α. For any α of size 3, the results are already well-known. However, out of the 15 such α ...

متن کامل

The complexity of counting poset and permutation patterns

We introduce a notion of pattern occurrence that generalizes both classical permutation patterns as well as poset containment. Many questions about pattern statistics and avoidance generalize naturally to this setting, and we focus on functional complexity problems – particularly those that arise by constraining the order dimensions of the pattern and text posets. We show that counting the numb...

متن کامل

A Counting of the minimal realizations of the posets of dimension two

The posets of dimension 2 are those posets whose minimal realizations have two elements, that is, which may be obtained as the intersection of two of their linear extensions. Gallai's decomposition of a poset allows for a simple formula to count the number of the distinct minimal realizations of the posets of dimension 2. As an easy consequence, the characterization of M. El-Zahar and of N.W. S...

متن کامل

n ! MATCHINGS , n ! POSETS

We show that there are n! matchings on 2n points without socalled left (neighbor) nestings. We also define a set of naturally labeled (2+2)free posets and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matching...

متن کامل

Interval number of special posets and random posets

The interval number i(P) of a poset P is the smallest t such that P is a containment of sets that are unions of at most t real intervals. For the special poset Bn(k) consisting of the singletons and ksubsets of an n-element set, ordered by inclusion, i(Bn(k)) = min {k, n − k + 1} if |n/2 − k | ≥ n/2 − (n/2). For bipartite posets with n elements or n minimal elements, i(P) ≤  n lgn − lglgn  + ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2011